27-11-2018 22:16

Равномерное движение по прямой и вращение по окружности. Связь угловой и линейной скорости

Раздел физики, который изучает движение тел по различным траекториям, называется кинематикой. Практически полезными типами перемещения объектов являются движение по прямой и по окружности. Рассмотрим в статье, что представляют собой эти типы движения, какими формулами они описываются, а также приведем связь угловой и линейной скорости.

Движение по прямой

Равномерное прямолинейное движение

Связь угловой и линейной скорости можно определить, если знать, о каких величинах идет речь. Начнем со скорости линейной.

Манила, столица Филиппин: описание города, природные условия, фотоВам будет интересно:Манила, столица Филиппин: описание города, природные условия, фото

Со школьной скамьи каждый знает, что перемещение объектов в пространстве характеризуется тремя главными величинами:

  • пройденный путь S;
  • время движения t;
  • скорость v.

Формула, связывающая в единое равенство названные величины, приведена ниже:

S = v * t.

Приведенное выражение описывает равномерное движение тела по прямой линии. В международной системе единиц СИ величина S измеряется в метрах (м), t - в секундах (с), v - в метрах в секунду (м/с). Помимо названных единиц, путь и время могут измеряться в километрах (км) и часах (ч), соответственно. Тогда скорость будет выражаться в километрах в час (км/ч).

Записанная формула может применяться для решения широкого круга практических задач, например, движение транспортных средств по дорогам, движение кораблей и лодок по рекам, полет птиц и так далее.

Движение по окружности

Вращение колеса велосипеда

Перед тем как перейти к выводу формулы связи линейной и угловой скорости, следует рассмотреть последнюю с точки зрения физики.

Угловая скорость появляется в физике, когда речь идет о вращающихся объектах. Примерами могут быть вращение колеса велосипеда, маховика автомобиля или планеты вокруг своей звезды. Угловая скорость тела показывает, на какой угол в радианах оно поворачивается за единицу времени. Обычно эту величину обозначают греческой буквой ω (омега). Она измеряется в радианах в секунду (рад/с).

По аналогии с линейным случаем можно назвать три главных величины, которые описывают движение по окружности с постоянной скоростью угловой:

  • угол поворота θ;
  • время t;
  • угловая скорость ω.

Соответствующая формула, которая связывает эти величины, выглядит так:

θ = ω * t.

Угол поворота тела θ вокруг оси вращения измеряется в радианах. Напомним, что окружность имеет 2 * pi радиан (около 6,28). Если полученное по формуле значение θ оказалось больше, чем 2 * pi, то это означает, что тело сделало больше одного оборота вокруг оси.

Таким образом, записанное выражение позволяет рассчитать число оборотов, совершаемых телом за известный промежуток времени t.

Связь угловой и линейной скорости

Вращение по окружности

Теперь можно рассмотреть этот вопрос. Предположим, что тело, имеющее линейную скорость v, вращается по окружности радиусом R. Чтобы получить между линейной и угловой скоростью связь, рассмотрим, какое время понадобится телу, чтобы сделать полный один оборот. Поскольку пройденный путь будет равен длине окружности, то следующее выражение будет справедливым:

t = S/v = 2 * pi * R/v.

Теперь воспользуемся угловыми величинами. За найденное время одного оборота t, тело повернется точно на 2 * pi радиан. Последнее означает, что его угловая скорость будет равна:

ω = θ/t = 2 * pi/t.

Подставим рассчитанное выше время t и получим между угловой и линейной скоростью связь:

ω = 2 * pi/t = 2 * pi/(2 * pi * R/v) = v/R.

Полученную формулу можно записать в двух видах:

ω = v/R;

v = ω * R.

Каждое из выражений применяется в зависимости от того, какая величина в условии задачи известна. Формулы позволяют сделать важный вывод: чем больше радиус орбиты вращение, тем больше будет линейная скорость при постоянной угловой скорости.

Далее решим интересную задачу на применение полученных формул.

Что быстрее - Земля или Марс?

Вращение Земли и Марса

Известно, что Земля и Марс являются 3-й и 4-й планетами Солнечной системы, соответственно. Обе планеты движутся приблизительно по круглым орбитам. Расстояние от нашей звезды до Земли равно 149 597 870,691 км, а один оборот вокруг нее она делает за 365,256 дней. Марс расположен от Солнца на расстоянии 227 936 640 км, и один оборот вокруг него делает за 686,971 земных дня. Необходимо определить и сравнить линейные скорости планет.

Угловая скорость планеты может быть рассчитана по формуле:

ω = 2 * pi/T.

Где T - период (время совершения одного оборота вокруг звезды). Подставляя ω в формулу для v, получаем:

v = 2 * pi * R/T.

Переведем время оборота планет в часы и подставим данные в это равенство, получим:

  • для Земли: v = 2 * 3,14 * 149597870,691/(365,256 * 24) ≈ 107,2 тыс. км/ч;
  • для Марса: v = 2 * 3,14 * 227936640/(686,971 * 24) ≈ 86,8 тыс. км/ч.

Обе цифры являются огромными. Так, Земля за один час пролетает в космосе расстояние, практически равное трем ее окружностям по экватору. Полученные скорости свидетельствуют, что Земля движется быстрее Марса, и ее скорость на 24 % больше марсианской.



Источник