05-11-2018 01:15

Основная формула дифракционной решетки

Одними из известных эффектов, которые подтверждают волновую природу света, являются дифракция и интерференция. Главная область их применения - спектроскопия, в которой для анализа спектрального состава электромагнитного излучения используют дифракционные решетки. Формула, которая описывает положение главных максимумов, даваемых этой решеткой, рассматривается в данной статье.

В чем заключаются явления дифракции и интерференции?

Прежде чем рассматривать вывод формулы дифракционной решетки, следует познакомиться с явлениями, благодаря которым это решетка оказывается полезной, то есть с дифракцией и интерференцией.

Зипун - это... Значение и происхождение словаВам будет интересно:Зипун - это... Значение и происхождение слова

Дифракция - это процесс изменения движения волнового фронта, когда на своем пути он встречает непрозрачное препятствие, размеры которого сравнимы с длиной волны. Например, если через маленькое отверстие пропустить солнечный свет, то на стене можно наблюдать не маленькую светящуюся точку (что должно было произойти, если бы свет распространялся по прямой линии), а светящееся пятно некоторых размеров. Этот факт свидетельствует о волновой природе света.

Явление дифракции

Интерференция - еще одно явление, которое характерно исключительно для волн. Его суть заключается в наложении волн друг на друга. Если волновые колебания от нескольких источников согласованы (являются когерентными), тогда можно наблюдать устойчивую картину из чередующихся светлых и темных областей на экране. Минимумы на такой картине объясняются приходом волн в данную точку в противофазе (pi и -pi), а максимумы являются результатом попадания в рассматриваемую точку волн в одной фазе (pi и pi).

Явление интерференции

Оба описанных явления впервые объяснил англичанин Томас Юнг, когда исследовал дифракцию монохроматического света на двух тонких щелях в 1801 году.

Принцип Гюйгенса-Френеля и приближения дальнего и ближнего полей

Математическое описание явлений дифракции и интерференции является нетривиальной задачей. Нахождение точного ее решения требует выполнение сложных расчетов с привлечением максвелловской теории электромагнитных волн. Тем не менее в 20-е годы XIX века француз Огюстен Френель показал, что, используя представления Гюйгенса о вторичных источниках волн, можно с успехом описывать эти явления. Эта идея привела к формулировке принципа Гюйгенса-Френеля, который в настоящее время лежит в основе вывода всех формул для дифракции на препятствиях произвольной формы.

Тем не менее даже с помощью принципа Гюйгенса-Френеля решить задачу дифракции в общем виде не удается, поэтому при получении формул прибегают к некоторым приближениям. Главным из них является плоский волновой фронт. Именно такая форма волны должна падать на препятствие, чтобы можно было упростить ряд математических выкладок.

Следующее приближение заключается в положении экрана, куда проецируется дифракционная картина, относительно препятствия. Это положение описывается числом Френеля. Оно вычисляется так:

F = a2/(D*λ).

Где a - геометрические размеры препятствия (например, щели или круглого отверстия), λ - длина волны, D - дистанция между экраном и препятствием. Если для конкретного эксперимента F<<1 (<0,001), тогда говорят о приближении дальнего поля. Соответствующая ему дифракция носит фамилию Фраунгофера. Если же F>1, тогда имеет место приближение ближнего поля или дифракция Френеля.

Разница между дифракциями Фраунгофера и Френеля заключается в различных условиях для явления интерференции на маленьком и большом расстояниях от препятствия.

Фраунгофера и Френеля дифракции

Вывод формулы главных максимумов дифракционной решетки, который будет приведен далее в статье, предполагает рассмотрение дифракции Фраунгофера.

Дифракционная решетка и ее виды

Эта решетка представляет собой пластинку из стекла или прозрачного пластика размером в несколько сантиметров, на которую нанесены непрозрачные штрихи одинаковой толщины. Штрихи расположены на постоянном расстоянии d друг от друга. Это расстояние носит название периода решетки. Две других важных характеристики прибора - это постоянная решетки a и число прозрачных щелей N. Величина a определяет количество щелей на 1 мм длины, поэтому она обратно пропорциональна периоду d.

Прозрачная дифракционная решетка

Существует два типа дифракционных решеток:

  • Прозрачная, которая описана выше. Дифракционная картина от такой решетки возникает в результате прохождения через нее волнового фронта.
  • Отражающая. Она изготавливается с помощью нанесения маленьких бороздок на гладкую поверхность. Дифракция и интерференция от такой пластинки возникают за счет отражения света от вершин каждой бороздки.

Какой бы ни был тип решетки, идея ее воздействия на волновой фронт заключается в создании периодического возмущения в нем. Это приводит к образованию большого количества когерентных источников, результатом интерференции которых является дифракционная картина на экране.

Основная формула дифракционной решетки

Отражающая дифракционная решетка

Вывод этой формулы предполагает рассмотрение зависимости интенсивности излучения от угла его падения на экран. В приближении дальнего поля получается следующая формула для интенсивности I(θ):

I(θ) = I0*(sin(β)/β)2*[sin(N*α)/sin(α)]2, где

α = pi*d/λ*(sin(θ) - sin(θ0));

β = pi*a/λ*(sin(θ) - sin(θ0)).

В формуле ширина щели дифракционной решетки обозначается символом a. Поэтому множитель в круглых скобках отвечает за дифракцию на одной щели. Величина d - это период дифракционной решетки. Формула показывает, что множитель в квадратных скобках, где появляется этот период, описывает интерференцию от совокупности щелей решетки.

Пользуясь приведенной формулой, можно рассчитать значение интенсивности для любого угла падения света.

Если находить значение максимумов интенсивности I(θ), то можно прийти к выводу, что они появляются при условии, что α = m*pi, где m является любым целым числом. Для условия максимумов получаем:

m*pi = pi*d/λ*(sin(θm) - sin(θ0)) =>

sin(θm) - sin(θ0) = m*λ/d.

Полученное выражение называется формулой максимумов дифракционной решетки. Числа m - это порядок дифракции.

Другие способы записи основной формулы для решетки

Заметим, что в приведенной в предыдущем пункте формуле присутствует член sin(θ0). Здесь угол θ0 отражает направление падения фронта световой волны относительно плоскости решетки. Когда фронт падает параллельно этой плоскости, то θ0 = 0o. Тогда получаем выражение для максимумов:

sin(θm) = m*λ/d.

Поскольку постоянная решетки a (не путать с шириной щели) обратно пропорциональна величине d, то через постоянную дифракционной решетки формула выше перепишется в виде:

sin(θm) = m*λ*a.

Чтобы не возникало ошибок при подстановке конкретных чисел λ, a и d в эти формулы, следует всегда использовать соответствующие единицы СИ.

Понятие об угловой дисперсии решетки

Дифракция от диска

Будем обозначать эту величину буквой D. Согласно математическому определению, она записывается следующим равенством:

D = dθm/dλ.

Физический смысл угловой дисперсии D заключается в том, что она показывает, на какой угол dθm сместится максимум для порядка дифракции m, если изменить длину падающей волны на dλ.

Если применить это выражение для уравнения решетки, тогда получится формула:

D = m/(d*cos(θm)).

Дисперсия угловая дифракционной решетки определяется по формуле выше. Видно, что величина D зависит от порядка m и от периода d.

Чем больше дисперсия D, тем выше разрешающая способность данной решетки.

Разрешающая способность решетки

Под разрешающей способностью понимают физическую величину, которая показывает, на какую минимальную величину могут отличаться две длины волны, чтобы их максимумы на дифракционной картине появлялись раздельно.

Разрешающая способность определяется критерием Рэлея. Он гласит: два максимума можно разделить на дифракционной картине, если расстояние между ними оказывается больше полуширины каждого из них. Угловая полуширина максимума для решетки определяется по формуле:

Δθ1/2 = λ/(N*d*cos(θm)).

Разрешающая способность решетки в соответствии с критерием Рэлея равна:

Δθm>Δθ1/2 или D*Δλ>Δθ1/2.

Подставляя значения D и Δθ1/2, получаем:

Δλ*m/(d*cos(θm))>λ/(N*d*cos(θm) =>

Δλ > λ/(m*N).

Это и есть формула разрешающей способности дифракционной решетки. Чем больше число штрихов N на пластинке и чем выше порядок дифракции, тем больше разрешающая способность для данной длины волны λ.

Дифракционная решетка в спектроскопии

Дифракционный спектр

Выпишем еще раз основное уравнение максимумов для решетки:

sin(θm) = m*λ/d.

Здесь видно, что чем больше длина волны падает на пластинку со штрихами, тем при больших значениях углов будут появляться максимумы на экране. Иными словами, если через пластинку пропустить немонохроматический свет (например, белый), то на экране можно видеть появление цветных максимумов. Начиная от центрального белого максимума (дифракция нулевого порядка), дальше будут появляться максимумы для более коротких волн (фиолетовый, синий), а затем для более длинных (оранжевый, красный).

Другой важный вывод из этой формулы заключается в зависимости угла θm от порядка дифракции. Чем больше m, тем больше значение θm. Это означает, что цветные линии будут сильнее разделены между собой на максимумах для высокого порядка дифракции. Этот факт уже был освящен, когда рассматривалась разрешающая способность решетки (см. предыдущий пункт).

Описанные способности дифракционной решетки позволяют использовать ее для анализа спектров излучения различных светящихся объектов, включая далекие звезды и галактики.

Пример решения задачи

Покажем, как пользоваться формулой дифракционной решетки. Длина волны света, которая падает решетку, равна 550 нм. Необходимо определить угол, при котором появляется дифракция первого порядка, если период d равен 4 мкм.

Угол θ1 легко рассчитать по формуле:

θ1 = arcsin(λ/d).

Переводим все данные в единицы СИ и подставляем в это равенство:

θ1 = arcsin(550*10-9/(4*10-6)) = 7,9o.

Если экран будет находиться на расстоянии 1 метр от решетки, то от середины центрального максимума линия первого порядка дифракции для волны 550 нм появится на расстоянии 13,8 см, что соответствует углу 7,9o.



Источник